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A key to the understanding of electron–molecular vibration
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Abstract. A two-site Hubbard model has been utilized for description of the electron–molecular
vibration coupling (EMVC) in organic charge-transfer (CT) salts with dimerized structures.
It was shown that the intermolecular charge oscillations in the anti-phase totally symmetric
vibrations are accompanied by a decrease of energy of the occupied electronic state in the dimer.
This effect is responsible for the frequency shift of i.r.-active electron-vibrational bands compared
with relevant Raman modes, and can be described in terms of dimensionless coupling constants.
The absorption coefficients for the bands were found to be proportional to the frequency shifts.
The calculated values are in good quantitative agreement with experimental data for BEDT-
TTF-based and TTF-based monovalent CT complexes.

1. Introduction

Optical properties of organic charge-transfer (CT) salts of different families have been the
subjects of numerous studies—see [1, 2]. One common feature has been found to be
characteristic for all substances with dimerized structures. Infrared spectra of compounds
formed by radical molecules exhibit some additional bands which are not observed in the
spectra of neutral species. The bands, called frequently electron-vibrational or ‘vibronic’
bands, reveal themselves not only in the solid state but also in concentrated solutions. They
originate from Ferguson–Matsen ‘charge oscillations’ known of for isolated CT complexes
[3]. In conducting complexes of mixed valency the bands are strongly broadened due to
coupling with free carriers and are distinctly observed on the background of an intense
electronic transition. In quasi-one-dimensional semiconducting compounds the shape of the
spectrum can be described within the framework of linear response theory [4, 5]. However,
a comprehensive theoretical explanation of the phenomena is lacking up to now.

The additional bands are clearly seen in i.r. spectra of monovalent insulating CT salts,
particularly of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) family [6, 8]. In these
compounds the lowest electronic CT excitation is located at about 1.18 eV and is well
separated from the region of molecular vibrations. It was shown that the most intense
i.r. bands in the salts at 1401, 1331, 489 and 476 cm−1 are caused by coupling of
four totally symmetric Raman-active ag vibrations ν2, ν3, ν9 and ν10 of the donor with
charge localized on molecules [6]. They are absent in the absorption spectrum of neutral
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BEDT-TTF and reveal themselves in the salt at frequencies somewhat lower than relevant
Raman transitions (1455, 1431, 511 and 489 cm−1 correspondingly). The differences in
frequencies of matching i.r. and Raman bands are equal for these vibrations to 54, 100,
22 and 13 cm−1 respectively. Quite similar peculiarities were observed in the spectra of
monovalent tetrathiafulvalene (TTF) salts [7].

It was shown that positions of the electron-vibrational bands may be reproduced using a
normal coordinate analysis of a molecular dimer [8]. The bands were treated as anti-phase
vibrations (ν−

n ) of molecules in the dimer that appear in the spectra due to intermolecular
charge transfer. Their shift relatively to matching in-phase modes (ν+

n ) was introduced with
the help of empirical intermolecular force constants.

It is known that electron-electron correlations are crucial for analysis of low-energy
electronic excitations in the monovalent salts [1]. A two-site Hubbard model is normally
applied for the evaluation of the energy of the lowest CT transition in these compounds [9].
EMVC in the CT salts was considered in [4]; the solution for the dimer with two interacting
electrons was obtained using the perturbation method. In the present work the coupling
effect was included directly into the Hubbard model. Assuming that the intermolecular
CT in the anti-phase vibrations is controlled by the electron–electron interaction in the
dimer, we obtained energy shifts and relative intensities of the electron-vibrational bands.
Calculated values are compared with experimental data for BEDT-TTF-based and TTF-
based monovalent complexes.

2. Formulation

Following [4, 5] a dimer formed by two radical molecules is considered as a smallest
structural unit responsible for optical properties of the substances. In agreement with [10]
we suggest that the unpaired electron in each molecule resides in a nondegenerate electronic
state which is well separated from other energy levels. In donor compounds the state is
related to the highest occupied molecular orbital (HOMO). Motions of atoms in molecules
are supposed to be correlated due to the intermolecular charge transfer controlled by the
Hubbard interactionU and hopping (transfer) integralt . The molecules in the dimer may
vibrate in the in-phase or the anti-phase manner. For simplicity only totally symmetric ag

intramolecular modes are taken into account. In figure 1 the molecules are approximated
with two atoms located at sites a and b. Each atom bears one unpaired electron. A
quite similar approach was employed in [4, 5]. However, in order to solve for a two-site
Hamiltonian directly, we introduce intramolecular vibrations of molecules in a different
way.

It was shown [10, 11] that displacements of atoms in totally symmetric molecular
vibrations induce a shift of the energy level occupied by the unpaired electron. The deviation
1 from an equilibrium energyε0 in the nth vibration can be calculated by a quantum-
chemical method for a single molecule. These values are usually described in terms of
dimensionless coupling constantsgn [10]. They are defined as deviations of the HOMO
energy with respect to the variation of a normal coordinate of the mean square amplitude
for zero vibration and normalized byhνn. Assuming that the vibration with energy12hνn

induces a HOMO shift1n/2, one can writegn = 1n/(2
√

2hνn) (a further indexn in 1n

is missed). We will search for two-electron energies and intermolecular CT in the dimer
originating from the shifts of the one-electron energies1 and stipulated by the hoppingt .
Instead of separate consideration of the electronic and vibrational parts of the task (as in
[4]), we will evaluate changes of the two-electron energies when atoms in molecules are
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Figure 1. A schematic representation of a molecular dimer. Anti-
phase variations of one-electron energies and the relevant shift of
the lowest two-electron state of the dimer are shown with thin and
thick arrows correspondingly. The notation is described in the text.

displaced from equilibrium positions in the in-phase and anti-phase modes. The vibrations
of molecules are introduced using the parameter1.

The Hamiltonian for the model may be written as follows:

H = εana + εbnb + t
∑

σ

(a+
σ bσ + b+

σ aσ ) + U(na,+na,− + nb,+nb,−) (1)

wherea+
σ (b+

σ ) andaσ (bσ ) denote site fermion creation and destruction operators for the
unpaired electron, andσ = ±1 is the electronic spin projection. As usual,na,σ = a+

σ aσ ,
nb,σ = b+

σ bσ , na = na,σ + na,−σ , nb = nb,σ + nb,−σ are the electron number operators for
sites a and b correspondingly.εa and εb are measured relatively to the equilibrium value
ε0 and can be equal to±1/2 if a vibration with energyhν is excited in the dimer (figure
1). The Hamiltonian comprising the last two terms was considered earlier by Harris and
Lange [12].

It is convenient to introduce the following set of basis states for the two-electron system:

|u〉 = a+
+a+

−|0〉
|v〉 = b+

+b+
−|0〉

|x〉 = a+
+b+

−|0〉
|y〉 = b+

+a+
−|0〉.

Then the Hamiltonian becomes the 4× 4 matrix
2εa + U 0 t t

0 2εb + U t t

t t εa + εb 0
t t 0 εa + εb

 . (2)

As usual, eigenfunctions are sought in the form

|Ei〉 = αi |u〉 + βi |v〉 + φi |x〉 + ηi |y〉. (3)

The relationεa = εb = 0 corresponds to the conventional solution [12]. The eigenvalues
calculated exactly and the magnitudes obtained in the narrow-band limit (t � U ) for four
two-electron states are

E4 = U/2 +
√

(U/2)2 + 4t2 ' U + 4t2/U

E3 = U

E2 = 0

E1 = U/2 −
√

(U/2)2 + 4t2 ' −4t2/U.

(4)
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The coefficients in equation (3) become equal to

α3 = −β3 = 1/
√

2 φ3 = η3 = 0

α2 = β2 = 0 φ2 = −η2 = 1/
√

2

αi = βi = Ei/2t√
2
√

1 + (Ei/2t)2
φi = ηi = 1√

2
√

1 + (Ei/2t)2
i = 1, 4.

(5)

The level diagram for the dimer is shown in figure 2 with dashed lines (U = 1 eV,
2t = 0.4 eV). The sum of four energies is

∑
Ei

= 2U (a trace of the matrix (2)).

Figure 2. The dependence of energies for
four two-electron states of the dimer on
the difference of one-electron energies1

(solid lines). The cases where1 = 0,
t 6= 0 and1 6= 0, t = 0 are shown with
dashed and dotted lines respectively.

Optical excitations are allowed between states for which the matrix element of the
transition dipole moment

〈Ei |na − nb|Ej 〉 = 2(αiαj − βiβj ) (6)

has a nonzero magnitude. From the lowest energy state the allowed CT transition is only
to the state with energyU (see also [4]):

ECT = U/2 +
√

(U/2)2 + 4t2. (7)

We can estimate also magnitudes of matrix elements related to the occupation of sites
and electron hopping. Forith state they are expressed correspondingly as

〈Ei |a+
+a+ + a+

−a− + b+
+b+ + b+

−b−|Ei〉 = 2(α2
i + β2

i )

〈Ei |a+
+b+ + a+

−b− + b+
+a+ + b+

−a−|Ei〉 = 2(φ2
i + η2

i ).
(8)

In the narrow-band limit for the lowest energy state we obtain

α2
1 + β2

1 = 4t2

U2 + 4t2
φ2

1 + η2
1 = U2

U2 + 4t2
. (9)

Equations (4) and (9) show that an increase of the hoppingt causes the increase of the
occupation of the sites and decrease of the energyE1.

Due to intramolecular vibrations, one-electron energies in the dimer may vary, and a
more general form of the Hamiltonian (2) has to be considered. In the in-phase vibrations
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the energy shifts areεa = εb = 1/2 and the eigenvalues of the Hamiltonian become equal
to

E4 = 1 + U/2 +
√

(U/2)2 + 4t2

E3 = 1 + U

E2 = 1

E1 = 1 + U/2 −
√

(U/2)2 + 4t2.

(10)

One can see that the energy spectrum of the dimer is the same as earlier (equation (4)); its
origin only shifts by1. The excitation of the in-phase vibrationν+ in the dimer contributes
to its energy as

Eel
a /2 + Eel

b /2 + |1/2| + |1/2| = Eel + 1 = hν

where Eel is a variation of an elastic energy of the molecule taken in addition to the
change of its electronic term1. Obviously the in-phase mode has the same energy as the
corresponding vibration of a single moleculehν and therefore is completely decoupled from
the electronic system of the dimer.

In anti-phase vibrations the deviations of one-electron energies have opposite signs,
εb = −εa = 1/2 (figure 1). The eigenvalues of the Hamiltonian (2) can be found as roots
of following algebraic equation:

E(E3 − 2UE2 + (U2 − 4t2 − 12)E + 4t2U) = 0. (11)

Analytical solution of the equation leads to cumbersome expressions for all roots with the
evident exception ofE2 = 0. That is why we carried out the numerical evaluation. The
level diagram obtained as a function of the difference of one-electron energies1 is shown
in figure 2 with solid lines. Evidently the shape of the spectrum changes. As earlier,∑

Ei = 2U .
One can easily calculate the variation of two-electron energies induced by1 in the

system when no hopping is allowed. The eigenvalues fort = 0, E4 = U +1, E3 = U −1,
E2 = E1 = 0, are shown in figure 2 with dotted lines. Two lowest energy levels are
independent of1 (as a sum of the same one-electron values with opposite signs) and in the
two highest energy states the shift of the one-electron energies is just doubled because two
electrons occupy the same site. Obviously ift = 0 the anti-phase modeν− has the same
energy as the relevant vibration of a single molecule,

Eel
a /2 + Eel

b /2 + |−1/2| + |1/2| = Eel + 1 = hν.

The solution fort 6= 0 can be obtained in the narrow-band limit. The case wheret, 1 � U

is normally observed in real organic compounds. Expansion of the roots of equation (11)
nearU + 4t2/U + 1, U − 1 and−4t2/U gives the following expressions:

E4 = U + 1 + 4t2

U

[
1 − 1(U + 21)

4t2 + 21(U + 1)

]
E3 = U − 1

[
1 − 4t2

4t2 + 21(U − 1)

]
E2 = 0

E1 = −4t2

U

[
1 + 12(U2 − 4t2)

U2(U2 + 12t2 − 12)

]
.

(12)

Due to the linearization used,
∑

Ei is not exactly 2U as was observed for the numerical
solution.
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The lowest energy state is the most important for us. This is the highest electronic
state in the dimer occupied by electrons and the only occupied state which contributes to its
electronic energy within the framework of our model. Energy variations of occupied states
are responsible for frequencies of molecular vibrations [13]. One can see that the energy
of the state now depends on1. Its deviationδ from the constant value−4t2/U is equal to

δ = 4t2

U

12(U2 − 4t2)

U2(U2 + 12t2 − 12)
. (13)

Figure 3 shows that equation (13) approximates the numerical solution very well even at
quite big1.

Figure 3. The deviation of the energy
of the lowest two-electron state of the
dimerδ versus the difference of one-electron
energies1 calculated from equation (13)
(dashed line) and obtained by numerical
evaluation of equation (11) (solid line).

The energy of the anti-phase vibrationν− can be written as

Eel
a /2 + Eel

b /2 + |−1/2| + |1/2| − δ = Eel + 1 − δ = hν − δ.

Compared with that of the single molecule or in-phase dimeric mode, the energy decreases
due to the appearance of the electron-vibrational termδ. The anti-phase mode couples with
the electronic system of the dimer and should reveal itself in the spectrum with the energy
shift δ.

The expressions for the coefficients of the eigenfunctions are

α2 = β2 = 0 φ2 = −η2 = 1/
√

2

αi = U − Ei + 1

D
βi = U − Ei − 1

D

φi = ηi = 2t

Ei

U − Ei

D
i = 1, 3, 4

D =
√

2

√(
1 + 4t2

E2
i

)
(U − Ei)2 + 12.

(14)

As long asαi 6= βi (i = 1, 3, 4) the occupation of the sites is not the same, and the
differencena − nb = 〈Ei |na − nb|Ei〉 = 2(α2

i − β2
i ) may be immediately evaluated:

α2
i − β2

i = 41(U − Ei)

D2
i = 1, 3, 4. (15)
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For the lowest energy state in the narrow-band limit and1 � t we obtain

α2
1 − β2

1 = 21
4t2U

(U2 + 4t2)2
. (16)

The magnitudes of the matrix elements defined according to equation (8) were calculated
numerically and for the lowest energy state are shown in figure 4 as a function of1. One
can see that an increase of1 causes the increase ofα2

1+β2
1 and equal decrease ofφ2

1 +η2
1. A

quite similar rise in the occupation of the sites can be induced in the dimer by increasing the
hoppingt , equation (9), and is also accompanied by a decrease of the energyE1, equation
(4). So the influence of1 on the electronic system of the dimer has quite a similar nature
and provokes an energy shiftδ of the lowest energy state. The occupation of the sites now
increases due to the intermolecular CT in anti-phase vibrations.

Figure 4. The matrix elements for the
lowest two-electron state of the dimer versus
the difference of one-electron energies1
calculated from equation (16) (dashed line)
and obtained by numerical evaluation of
equations (11) and (14) (solid lines).

It is known that the absorption coefficient of an i.r. band is proportional to the square
of the matrix element of the transition dipole moment [13]. We have shown earlier that due
to the lack of intermolecular charge transfer, the situation with completely decoupled in-
phase vibrations is equivalent to the case of isolated molecules, when in particularαi = βi .
Therefore the matrix element of the transition dipole moment between states with and
without (marked with an asterisk) the anti-phase vibration can be written as

〈E1|na − nb|E∗
1〉 = 2(α1α

∗
1 − β1β

∗
1) = 2α∗

1(α1 − β1).

This magnitude is evidently proportional to

na − nb = 2(α1 + β1)(α1 − β1)

(α1 + β1 ≈ constant; see equation (14)), i.e., the intermolecular CT provoked by1. In the
limit where1 � t the square of the latter difference can easily be evaluated from equation
(14) and equation (13):

(α1 − β1)
2 = δ

2U5(U2 + 12t2)

(U2 + 4t2)3(U2 − 4t2)
. (17)

One can see a linear dependence of the absorption caused by CT in the anti-phase vibration
on the energy shiftδ. This is the consequence of their common origin in the intermolecular
charge oscillation.



1018 M E Kozlov et al

3. Discussion and comparison with experiment

The CT in anti-phase vibrations with nonzero1 is accompanied by a shiftδ of the occupied
energy level of the dimer. The ‘vibronic’ shift is not observed ift = 0 and in the in-phase
modes. The influence of1 on the electronic system of the dimer is quite similar in
nature to the variation of occupation of the sites caused by the increase of the hopping
t . In the classical approach the decrease of energy of the ground state of the dimer due
to coupling with anti-phase vibrations can be introduced with the help of intermolecular
force constants [8], i.e., second derivatives of the energy with respect to changes of the
molecular-vibrational coordinates [13]. The intermolecular CT in the anti-phase vibrations
reveals itself as a decrease of stiffness of the molecules.

The intermolecular CT results in the appearance of intense bands in i.r. spectra. The
unusual electron-vibrational bands are definitely observed in the spectroscopic experiment
[6, 7]. The term linear in1 in equation (16) for the differencena − nb is relevant to
the shift of one-electron energies in the dimer and reveals itself for any1 inserted in
the Hamiltonian (2). The absorption coefficient for the i.r. bands provoked by anti-phase
vibrations is proportional to the energy shiftδ. The latter is equal to the frequency shiftS

between matching i.r. and Raman modes.
It should be mentioned that for small1 the precise anti-phase relation required for the

one-electron energies in the dimer may be easily destroyed by temperature fluctuations of
charge carriers in the compound. This should cause an abrupt decrease of intensities of the
electron-vibrational bands in the limit1 → 0 which is not predicted by our simple model.

Table 1. Experimental and calculated relative intensities and dimensionless coupling constantsgn for electron-
vibrational bands in BEDT-TTF-based [6] and TTF-based [7, 14] monovalent CT salts. The frequencies are in
cm−1.

ν+
n ν−

n Sn In/I3 In/I3 gn† gn‡
n (observed) (observed) (observed) (observed) (calculated) (calculated) (calculated)

BEDT-TTF
2 1455 1401 54 0.814 0.798 0.165 0.564
3 1431 1331 100 1.000 1.000 0.746 0.763
9 511 489 22 0.495 0.450 0.476 1.041

10 489 476 13 0.216 0.294 0.050 0.840

TTF
2 1506 1503 3 0.088 0.043 0.23 0.148
3 1430 1360 70 1.000 1.000 0.62 0.734
5 758 749 9 0.118 0.129 0.49 0.507
6 510 492 18 0.265 0.257 1.33 1.063

† Calculated by a quantum-chemical method for single BEDT-TTF [6] and TTF [10] molecules.
‡ Defined asgn = 1n/(2

√
2hνn) for 1n calculated on the basis of equation (13),δn = Sn. t = 0.19 eV,

U = 1.06 eV andt = 0.27 eV,U = 1.42 eV for BEDT-TTF-based and TTF-based salts respectively.

The comparison with experiment was performed using data on the BEDT-TTF-based [6]
and TTF-based [7, 14] monovalent CT salts mentioned in the introduction. Frequencies of
electron-vibrational bands (ν−

n ), their relative intensitiesIn/I3 (measured as absorbance and
normalized with the intensity of the strongest band) as well as frequency shiftsSn = ν+

n −ν−
n

compared with matching Raman-active modes (ν+
n ) are collected together in table 1 and are

shown in figure 5. The intensities were also evaluated on the assumption that the absorption
coefficient for the bandsA(ν) depends linearly on their shiftsS(ν), i.e., A(ν) = c1S(ν),
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wherec1 is a constant. According to the Lambert–Beer law we have

I (ν) = 1 − exp[−c2A(ν)] (18)

wherec2 is a scale factor. In the case of a weak absorptionc2A(ν) � 1, equation (18) can
be simplified toI (ν) = c2A(ν). The i.r. spectra of BEDT-TTF-based and TTF-based salts
were measured on a KBr pellet and on 0.23 mol dm−3 of solution in dimethylsulphoxide
correspondingly. Results of the mean square fitting of the relative valueI/I3 to the
experimental data are shown in figure 5. It appears that the powder spectrum is described
very well by equation (18)(c1c2 = 192) whereas the solution data are in excellent agreement
with the linear dependenceI (ν) ∼ S(ν) and both exhibit the same trends.

Figure 5. Relative intensities of electron-
vibrational bandsIn/I3 versus the energy
shift S for BEDT-TTF-based (circles)
and TTF-based (triangles) monovalent CT
salts obtained experimentally [6, 7] and
evaluated using equation (18),A(ν) ∼ S(ν)

and I (ν) ∼ S(ν) (solid lines for both
compounds respectively).

Using experimental values ofSn we estimated values of1n using equation (13). These
are shown in table 1 as dimensionless coupling constantsgn = 1n/(2

√
2hν+

n ). The transfer
integral t was taken as equal to 0.19 eV (reported in [15]), andU = 1.06 eV (evaluated
from equation (7) usingECT = 1.18 eV [6]) for BEDT-TTF-based salts; andt = 0.27 eV
[9], U = 1.42 eV andECT = 1.6 eV [7] for TTF-based salts. The values obtained can be
compared withgn calculated by a quantum-chemical method for single BEDT-TTF [6] and
TTF [10] molecules (see table 1). Very similargn-values were also reported in [16]. The
agreement with magnitudes obtained in our simple two-site approximation is quite good for
high-frequencyν2- andν3-vibrations (C=C stretchings). Thegn-values evaluated by us for
low-frequency modes (C–S stretchings in the central fragments of molecules) are higher
than those reported forν9- and ν10-vibrations in BEDT-TTF [6] but approach the values
for analogousν5- andν6-vibrations in smaller TTF molecules [10]. One can speculate that
some differences in both sets ofgn are caused by a competition of the intramolecular [6] and
intermolecular CT. The latter should slightly change the forms of intramolecular vibrations
and can therefore influence1. It seems that the competition is stronger in ‘spacious’
molecules and mainly affects less characteristic low-frequency modes.

In conclusion, the variation of one-electron energies in molecular vibrations has been
included into the two-site dimer model with Hubbard interaction. It was shown that the
intermolecular CT in anti-phase vibrations is accompanied by a decrease of energy of the
occupied two-electron state of the dimer. The effect is responsible for the frequency shift
of the electron-vibrational bands observed in i.r. spectra of organic CT salts with dimerized
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structures. The absorption coefficients of the bands are proportional to the frequency shifts.
The calculated values are in good quantitative agreement with experimental data on BEDT-
TTF-based and TTF-based monovalent CT complexes.
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